

MCP4725 12-Bit DAC Tutorial

Created by lady ada

https://learn.adafruit.com/mcp4725-12-bit-dac-tutorial

Last updated on 2021-11-15 05:51:37 PM EST

©Adafruit Industries Page 1 of 14

3

3

6

7

7

8

8

8

9

10

10

12

12

13

13

13

Table of Contents

Overview

Wiring

Arduino Code

• Increasing the speed

• Using the library

Python & CircuitPython

• CircuitPython Microcontroller Wiring

• Python Computer Wiring

• CircuitPython Installation of MCP4725 Library

• Python Installation of MCP4725 Library

• CircuitPython & Python Usage

• Full Example Code

Python Docs

Download

• Files

• Schematic & Fabrication Print

©Adafruit Industries Page 2 of 14

Overview

Your microcontroller probably has an ADC (analog -> digital converter) but does it

have a DAC (digital -> analog converter)??? Now it can! This breakout board features

the easy-to-use MCP4725 12-bit DAC. Control it via I2C and send it the value you want

it to output, and the VOUT pin will have it. Great for audio / analog projects, such as

when you can't use PWM but need a sine wave or adjustable bias point.

We break out the ADDR pin so you can connect two of these DACs on one I2C bus,

just tie the ADDR pin of one high to keep it from conflicting. Also included is a 6-pin

header, for use in a breadboard. Works with both 3.3V or 5V logic.

Some nice extras with this chip: for chips that have 3.4Mbps Fast Mode I2C (Arduino's

don't) you can update the Vout at ~200 KHz. There's an EEPROM so if you write the

output voltage, you can 'store it' so if the device is power cycled it will restore that

voltage. The output voltage is rail-to-rail and proportional to the power pin so if you

run it from 3.3V, the output range is 0-3.3V. If you run it from 5V the output range is

0-5V.

Available from the Adafruit shop! (http://adafru.it/935)

Wiring

Wiring up the MCP4725 breakout PCB is super easy. To start, we'll attach the

breakout headers so we can plug it into a breadboard.

©Adafruit Industries Page 3 of 14

https://www.adafruit.com/products/935

Break off a strip of 6-pins of 0.1" male header and stick the LONG pins down into a

breadboard

Break off a strip of 6-pins of 0.1" male

header and stick the LONG pins down

into a breadboard

Place the breakout board on top so the

short ends of the header stick up through

the pads

©Adafruit Industries Page 4 of 14

https://learn.adafruit.com//assets/2005
https://learn.adafruit.com//assets/2005
https://learn.adafruit.com//assets/2006
https://learn.adafruit.com//assets/2006

Solder each pin using a soldering iron

and solder, to make solid connection on

each pin.

This part is not optional! You cannot

'press fit' the header on, it must be

attached permanently

Now that the header is attached, we can wire it up. We'll demonstrate using an

Arduino.

FIrst, connect VDD (power) to a 3-5V power supply, and GND to ground.

The DAC uses I2C, a two-pin interface that can have up to 127 unique sensors

attached (each must have a different ADDRESS).

SDA to I2C Data (on the Uno, this is A4 on the Mega it is 20 and on the

Leonardo digital 2)

SCL to I2C Clock(on the Uno, this is A5 on the Mega it is 21 and on the

Leonardo digital 3)

There's two other pins remaining.

A0 allow you to change the I2C address. By default (nothing attached to A0) the

address is hex 0x62. If A0 is connected to VDD the address is 0x63. This lets

you have two DAC boards connected to the same SDA/SCL I2C bus pins.

•

•

•

©Adafruit Industries Page 5 of 14

https://learn.adafruit.com//assets/2007
https://learn.adafruit.com//assets/2007
https://learn.adafruit.com//assets/2009
https://learn.adafruit.com//assets/2009

VOUT is the voltage out from the DAC! The voltage will range from 0V (when the

DAC value is 0) to VDD (when the DAC 'value' is the max 12-bit number: 0xFFF)

Arduino Code

Next up, download the Adafruit MCP4725 library. This library does all of the

interfacing, so you can just "set and forget" the DAC output. It also has some

examples to get you started

The library is available on GitHub (https://adafru.it/aPz). You can download it by

clicking the button below.

Download Adafruit_MCP4725

Library

https://adafru.it/cDA

Rename the uncompressed folder Adafruit_MCP4725. Check that the Adafruit_MCP4

725 folder contains Adafruit_MCP4725.cpp and Adafruit_MCP4725.h

Place the Adafruit_MCP4725 library folder your sketchbookfolder/libraries/ folder. You

may need to create the libraries subfolder if its your first library. You can figure out

your sketchbookfolder by opening up the Preferences tab in the Arduino IDE.

 Restart the IDE.

•

©Adafruit Industries Page 6 of 14

https://github.com/adafruit/Adafruit_MCP4725
https://github.com/adafruit/Adafruit_MCP4725/archive/master.zip

Open up the File→Examples→Adafruit_MCP4725→trianglewave sketch and upload it

to the Arduino. Then connect your oscilloscope (or an LED + resistor if you don't have

access to an oscilloscope)

We also have a sine wave version showing how to use a lookup table to create a

more complex waveform.

Using the library

The library is very simple, so you can adapt it very quickly.

First, be sure to call begin(addr) where addr is the i2c address (default is 0x62, if A0

is connected to VCC its 0x63). Then call setVoltage(value, storeflag) to set the DAC

output. value should range from 0 to 0x0FFF. storeflag indicates to the DAC whether

it should store the value in EEPROM so that next time it starts, it'll have that same

value output. You shouldn't set the flag to true unless you require it as it will take

longer to do, and you could wear out the EEPROM if you write it over 20,000 times.

Increasing the speed

One thing thats a little annoying about the Arduino Wire library in this case is it is set

for 100KHz transfer speed. In the MCP4725 library we update the speed to 400KHz

by setting the TWBR

TWBR = 12; // 400 khz

©Adafruit Industries Page 7 of 14

You can speed this up a bit more, if you'd like, check the ATmega328 datasheet for

how to calculate the TWBR register.

Python & CircuitPython

It's easy to use the MCP4725 digital to analog converter with Python and

CircuitPython, and the Adafruit CircuitPython MCP4725 (https://adafru.it/C3P) module.

This module allows you to easily write Python code that controls the output voltage

from the DAC.

You can use this sensor with any CircuitPython microcontroller board or with a

computer that has GPIO and Python thanks to Adafruit_Blinka, our CircuitPython-for-

Python compatibility library (https://adafru.it/BSN).

CircuitPython Microcontroller Wiring

First wire up a MCP4725 to your board exactly as shown on the previous pages for

Arduino using an I2C connection. Here's an example of wiring a Feather M0 to the

sensor with I2C:

Board 3V to sensor VIN

Board GND to sensor GND

Board SCL to sensor SCL

Board SDA to sensor SDA

Python Computer Wiring

Since there's dozens of Linux computers/boards you can use we will show wiring for

Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to

see whether your platform is supported (https://adafru.it/BSN).

Here's the Raspberry Pi wired with I2C:

•

•

•

•

©Adafruit Industries Page 8 of 14

https://github.com/adafruit/Adafruit_CircuitPython_MCP4725
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com//assets/50522
https://learn.adafruit.com//assets/50522
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

Pi 3V3 to sensor VIN

Pi GND to sensor GND

Pi SCL to sensor SCK

Pi SDA to sensor SDA

CircuitPython Installation of MCP4725

Library

Next you'll need to install the Adafruit CircuitPython MCP4725 (https://adafru.it/C3P) li

brary on your CircuitPython board. Make sure you are running the latest version of

Adafruit CircuitPython (https://adafru.it/tBa) for your board before starting..

You'll need to install the necessary libraries to use the hardware--carefully follow the

steps to find and install these libraries from Adafruit's CircuitPython library bundle (htt

ps://adafru.it/zdx). For example the Circuit Playground Express guide has a great

page on how to install the library bundle (https://adafru.it/Bf2) for both express and

non-express boards.

Remember for non-express boards like the Trinket M0, Gemma M0, and Feather/

Metro M0 basic you'll need to manually install the necessary libraries from the bundle:

adafruit_mcp4725.mpy

You can also download the adafruit_mcp4725.mpy from its releases page on Github (

https://adafru.it/C3Q).

Before continuing make sure your board's lib folder or root filesystem has the adafrui

t_mcp4725.mpy file copied over.

Next connect to the board's serial REPL (https://adafru.it/pMf)so you are at the

CircuitPython >>> prompt.

•

•

•

•

•

©Adafruit Industries Page 9 of 14

https://learn.adafruit.com//assets/58997
https://learn.adafruit.com//assets/58997
https://github.com/adafruit/Adafruit_CircuitPython_MCP4725
https://github.com/adafruit/circuitpython/releases
https://github.com/adafruit/circuitpython/releases
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
file:///home/adafruit-circuit-playground-express/installing-libraries
file:///home/adafruit-circuit-playground-express/installing-libraries
https://github.com/adafruit/Adafruit_CircuitPython_MCP4725/releases
file:///home/micropython-basics-how-to-load-micropython-on-a-board/serial-terminal

Python Installation of MCP4725 Library

You'll need to install the Adafruit_Blinka library that provides the CircuitPython

support in Python. This may also require enabling I2C on your platform and verifying

you are running Python 3. Since each platform is a little different, and Linux changes

often, please visit the CircuitPython on Linux guide to get your computer ready (https

://adafru.it/BSN)!

Once that's done, from your command line run the following command:

sudo pip3 install adafruit-circuitpython-mcp4725

If your default Python is version 3 you may need to run 'pip' instead. Just make sure

you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

CircuitPython & Python Usage

To demonstrate the usage of the DAC we'll initialize it and set the output voltage from

the board's Python REPL. Run the following code to import the necessary modules

and initialize the I2C connection with the sensor:

import board

import busio

import adafruit_mcp4725

i2c = busio.I2C(board.SCL, board.SDA)

dac = adafruit_mcp4725.MCP4725(i2c)

Now you can set the output voltage just like controlling a DAC with CircuitPython's

built-in AnalogOut class and the value property. Simply set this to any 16-bit value

(0-65535) and the output of the Vout pin will change to a voltage proportional to

0-3.3V. For example to set the output to 1.65V or about halfway within its range:

dac.value = 32767

•

©Adafruit Industries Page 10 of 14

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

Hook up a multimeter to the Vout pin of

the board (positive/red lead to Vout,

ground/black lead to board GND) and

you should see about 1.65 volts DC

output. Try setting dac.value to other

numbers like 0 or 65535 to see how the

voltage changes.

Hook up a multimeter to the Vout pin of the board (positive/red lead to Vout, ground/

black lead to board GND) and you should see about 1.65 volts DC output. Try setting

dac.value to other numbers like 0 or 65535 to see how the voltage changes.

You can use the MCP4725 instance anywhere you might use the AnalogOut class!

However you might prefer a few other simpler properties to change the output

voltage:

normalized_value - Set this to a floating point number between 0 and 1.0. A

value of 0 is ground/0V and 1.0 is Vdd or max voltage/3.3V. Anything in-

between is a proportional voltage. This is handy for scaling the output value

without having to worry about how many bits of resolution it has.

raw_value - Set this to a 12-bit value 0-4095 to control the raw 12-bit output of

the DAC. Unlike the value property this raw_value exposes the true 12-bit

resolution of the DAC and is free from quantization errors. If you need the most

precise output use the raw_output value for setting voltage.

dac.normalized_value = 0.5 # ~1.65V output

dac.raw_output = 2047 # Also ~1.65V output

That's all there is to using the MCP4725 DAC with CircuitPython!

Below is a complete example that shows changing the DAC voltage to a triangle wave

that goes up and down repeatedly. Save this as code.py on your board and connect

a multimeter to measure the Vout pin voltage to see it oscillate up and down from 0 to

3.3V and back.

•

•

©Adafruit Industries Page 11 of 14

https://learn.adafruit.com//assets/59022
https://learn.adafruit.com//assets/59022

Full Example Code

SPDX-FileCopyrightText: 2018 Tony DiCola for Adafruit Industries

SPDX-License-Identifier: MIT

Simple demo of setting the DAC value up and down through its entire range

of values.

import board

import busio

import adafruit_mcp4725

Initialize I2C bus.

i2c = busio.I2C(board.SCL, board.SDA)

Initialize MCP4725.

dac = adafruit_mcp4725.MCP4725(i2c)

Optionally you can specify a different addres if you override the A0 pin.

amp = adafruit_max9744.MAX9744(i2c, address=0x63)

There are a three ways to set the DAC output, you can use any of these:

dac.value = 65535 # Use the value property with a 16-bit number just like

the AnalogOut class. Note the MCP4725 is only a 12-bit

DAC so quantization errors will occur. The range of

values is 0 (minimum/ground) to 65535 (maximum/Vout).

dac.raw_value = 4095 # Use the raw_value property to directly read and write

the 12-bit DAC value. The range of values is

0 (minimum/ground) to 4095 (maximum/Vout).

dac.normalized_value = 1.0 # Use the normalized_value property to set the

output with a floating point value in the range

0 to 1.0 where 0 is minimum/ground and 1.0 is

maximum/Vout.

Main loop will go up and down through the range of DAC values forever.

while True:

 # Go up the 12-bit raw range.

 print("Going up 0-3.3V...")

 for i in range(4095):

 dac.raw_value = i

 # Go back down the 12-bit raw range.

 print("Going down 3.3-0V...")

 for i in range(4095, -1, -1):

 dac.raw_value = i

Python Docs

Python Docs (https://adafru.it/C3S)

©Adafruit Industries Page 12 of 14

https://circuitpython.readthedocs.io/projects/mcp4725/en/latest/

Download

Files

For more details about the chip, please check out the MCP4725 datasheet (http

s://adafru.it/aRW)

MCP4725 Arduino Library is on GitHub (https://adafru.it/aPz)

Fritzing object in the Adafruit Fritzing library (https://adafru.it/aP3)

EagleCAD PCB files on GitHub (https://adafru.it/rMC)

Schematic & Fabrication Print

•

•

•

•

©Adafruit Industries Page 13 of 14

http://www.adafruit.com/datasheets/mcp4725.pdf
https://github.com/adafruit/Adafruit_MCP4725
https://github.com/adafruit/Fritzing-Library
https://github.com/adafruit/Adafruit-MCP4725-PCB

©Adafruit Industries Page 14 of 14

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

 Adafruit:

 935

https://www.mouser.com/adafruit
https://www.mouser.com/access/?pn=935

	MCP4725 12-Bit DAC Tutorial
	Table of Contents
	Overview
	Wiring
	Arduino Code
	Python & CircuitPython
	Python Docs
	Download

	Overview
	Wiring
	Arduino Code
	Using the library

	Increasing the speed
	Python & CircuitPython
	CircuitPython Microcontroller Wiring
	Python Computer Wiring
	CircuitPython Installation of MCP4725 Library
	Python Installation of MCP4725 Library
	CircuitPython & Python Usage
	Full Example Code
	Python Docs
	Download
	Files
	Schematic & Fabrication Print

